
Investigating Creative and Critical Engagement with Computing
in the Hour of Code (Practical Report)

Luis Morales-Navarro
luismn@upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Yasmin B. Kafai
kafai@upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Gayithri Jayathirtha
gayithri@upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

Mia Shaw
mshaw12@upenn.edu

University of Pennsylvania
Philadelphia, PA, USA

ABSTRACT
The Hour of Code provides brief stand-alone activities to intro-
duce K-12 learners to computing concepts and applications. While
these activities have successfully reached hundreds of millions of
students around the globe, there are calls for more creative and
critical engagement with computing. In this paper, we examine the
creative and critical content of 316 Hour of Code activities offered
to middle school and high school students as part of the official 2020
Computer Science Education Week. Our content analysis revealed
that only 13% Hour of Code activities promoted creative engage-
ment while only 1% of Hour of Code activities focused on critical
engagement, offering discussion guides at best. In the discussion
we provide recommendations for designing for more critical and
creative engagement with computing in future Hour of Code or
similar hour-long activities.

CCS CONCEPTS
• Social and professional topics → K-12 education; Comput-
ing literacy.

KEYWORDS
Critical computing, Hour of Code, Scratch, Programming, Creative
computing

ACM Reference Format:
Luis Morales-Navarro, Yasmin B. Kafai, Gayithri Jayathirtha, and Mia Shaw.
2021. Investigating Creative and Critical Engagement with Computing in
the Hour of Code (Practical Report). In The 16th Workshop in Primary and
Secondary Computing Education (WiPSCE ’21), October 18–20, 2021, Virtual
Event, Germany. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3481312.3481314

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8571-8/21/10. . . $15.00
https://doi.org/10.1145/3481312.3481314

1 INTRODUCTION
The Hour of Code (hereafter: HoC) is an annual event that offers
hour-long activities to introduce K-12 youth to computing [35],
taking a first step in “unlocking” the proverbial closed doors to the
clubhouses of computing [21]. According to HoC’s organizers, since
its launch in 2013, over 1,123,794,533 youth have participated in the
annual event. In December 2020 alone, 68,000+ HoC events were
offered in 180 countries around the globe amidst the many efforts
to introduce and promote computing and coding among youth. By
any measure, the outreach HoC achieved over the last eight years
has been an unprecedented success [13] but also not without critics.
Efforts such as the HoC overemphasize the importance of training
people for programming jobs over the potential of code as a means
to promote youth’s expressive, aesthetic, rhetorical, and critical
abilities [32–34].

The purpose of this paper is to (1) examine how 2020 HoC activ-
ities promote creative and critical computing and (2) to articulate
design directives for developing HoC-type activities that can ex-
pand the introduction to computing by promoting reflective critical
engagement with the field. Our analysis focuses on activities offered
to middle and high school youth (grades 6+) during the 2020 HoC to
address the following research question: How did HoC 2020 activi-
ties promote creative and critical engagement with computing? We
discuss possible directions for introducing and expanding critical
and creative engagement with computing in HoC-type activities.

2 BACKGROUND
HoC was launched in 2013 in the United States by the Computer
Science Teacher Association (CSTA) and code.org, a tech-industry-
funded non-profit organization, to introduce youth to computing
and advocate for making computing a part of the standard national
curriculum [2]. However, the use of brief stand-alone activities to
introduce K-12 youth to computing started much earlier. Scratch
Day, an annual event, could be considered a precursor to HoC.
The first Scratch Day in 2008 (following the 2007 launch of the
Scratch programming language and community) was organized
by MIT, the university that also hosts the Scratch website. Today,
a little over a decade, these events are community-organized and
take place in local schools, clubhouses, and universities around
the globe. Scratch Day meeting locations and times are published
on a website (https://day.scratch.mit.edu) thus allowing interested

https://orcid.org/0000-0002-8777-2374
https://orcid.org/0000-0003-4018-0491
https://doi.org/10.1145/3481312.3481314
https://doi.org/10.1145/3481312.3481314
https://doi.org/10.1145/3481312.3481314

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Morales-Navarro, et al.

youth and their parents to find events close to home. Scratch Days
can last a full afternoon, day or even a weekend, offering multiple
introductory activities to Scratch and other tools [22].

In contrast, from the beginning, the HoCwas designed to provide
hour-long activities that teachers could use in their classes during
Computer Science Education week (CSEdWeek), scheduled every
year in December. Over the years, HoC has spread internationally,
being adopted by countries across all continents (e.g., [3, 8, 10]).
Considering the number of participants around the globe, HoC
has been successful in terms of broadening access and giving K-12
students a first hand experience with computing [13]. Yet, only few
studies have taken a closer look at what students do and gain from
HoC events, moving beyond the numbers of participants and lines
of code to examine HoC’s possible impact in promoting interest in
coding [24], learner motivation [23] or opening pathways to STEM
careers [1]. At the outset, much of the early criticism of HoC has fo-
cused on the length and type of activities being limited to involving
individual students in “puzzle-like” programming activities [27].

Recent criticism of introductory computing activities, such as
HoC, has noted that very often “students do not have the oppor-
tunity to experience the full conceptual and expressive powers of
coding” [25] (p. 121), and that computing is presented as a “value-
neutral tool independent from society” [19] (p. 31) without consider-
ing its societal and ethical implications [30, 31]. As such, it is crucial
to investigate how creative and critical computing is promoted in
introductory activities.

Advocates for creative computing frame computing as a tool
for design and self-expression where learners build on personal
interests and connections to their lives [6, 18]. Creative computing
provides opportunities for learners to engage with concrete experi-
ences and create computational artifacts that are expressive rather
than utilitarian [20]. Indeed, this approach to computing empha-
sizes that learning programming can be an opportunity to express,
share and develop creativity rather than just technical skills [5, 7].
Over the years, HoC has attempted to provide creative opportuni-
ties by offering a wider range of activities in diverse programming
tools and platforms (e.g., Scratch, Python, Minecraft)[12]. Yet, al-
though the catalogue of activities is now broader and more diverse,
with some activities focusing on creative design and expression,
most efforts have centered on the inclusion of popular commercial
content in puzzle-like activities (e.g., Cartoon Network and Disney
characters, Google Doodles).

Proponents of critical computing take into account socio-cultural
and political contexts and advocate for attending to the implica-
tions, consequences, and limitations of computing [19, 30]. Here
criticism of HoC and similar activities has brought attention to the
hidden curriculum that promotes limited perspectives about who
can and should code and even why everyone should learn to code
[33, 34]. Furthemore, there is a need to counterbalance overly tech-
nocentric views of computing applications as solutions to structural
inequities that shield how computing itself can benefit some people
while harming others based on race, gender, and class [4, 9]. These
criticisms provide pointers to how HoC activities can be shaped to
address critical issues.

In this paper, we want to examine how far along HoC in 2020
has come in terms of addressing the creative and critical dimen-
sions of computing in its activities. Given HoC’s widespread reach

and worldwide recognition as the introduction to computing for
most K-12 students, it is imperative to understand the messag-
ing about computing promoted in these activities. To do so, we
draw on previous work that has articulated design principles for
promoting creative computing via construction kits [26] and com-
puting activities [17] and developed a new one to address critical
dimensions that can be applied to HoC activities. To design, and
by extension evaluate, computing activities we should address: (1)
Low Floors—the activity should be intuitive enough for new users
to acclimate to it gradually and with a degree of confidence; (2)
High Ceilings—the activity should also facilitate more experienced
users to create increasingly complex applications that grow more
intricate and nuanced as their proficiency using the tool increases;
and (3)Wide Walls—the activity should allow for a wide range of
projects, letting users tap into their personal experiences as well
as popular culture to design and develop projects entirely unique
and representative of their own interests and backgrounds. In addi-
tion, we consider a fourth principle (4) Open Windows—the activity
should facilitate participation and sharing computational media
creations with the broader community [16].

Current HoC activities address mostly the first principle, Low
Floors, by lowering the threshold for beginners to start learning to
code. Little attention has been paid to principles such as High Ceil-
ings, given the introductory and short term nature of HoC. Over the
years, HoC has tried to address the Wide Walls principle by includ-
ing a broader and more diverse set of activities and programming
environments, with some focusing on creative designs. Activities
that foster Open Windows are much less present because of the
individual puzzle-like nature of HoC activities. Whenever there
is sharing and discussion these are limited to the classroom and
usually directed by teachers.

Explicit criteria for evaluating critical computing have not been
developed so far. The principles of low floors, wide walls, high ceil-
ings, and open windows should not only apply to creative computing
but also to activities in which youth engage with critical computing,
as these ensure that activities are accessible and of interest to youth.
To continue the metaphor of the house and address critical issues
within computing, we propose a fifth principle, which we call (5)
Visible Foundations—the tool or activity should also raise questions
and allow novices to engage critically with certain foundational
ideas about what computing is, who can participate in computing
and what the purposes and implications of computing are.

In 2019, CSTA and code.org, in response to rising concerns about
the lack of diversity in the tech industry and hidden biases in com-
puting, took a first step towards critical computing and created HoC
activities under the umbrella of CS4Good to address environmental,
gender, and LGBTQ+ issues with (but not within!) computing. In
examining the visible foundations of HoC activities, we want to pay
attention to how critical issues within computing can be made more
transparent. In this paper, we analyze the wide walls and visible
foundations of HoC 2020 activities to understand where and how
these activities stand in promoting creative and critical engagement
with computing.

Investigating Creative and Critical Engagement with Computing in the Hour of Code WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

3 METHODS
3.1 Hour of Code Activities
We examined learning activities listed on code.org’s hourofcode.com
and CSTA’s csedweek.org. Activities on the HoC website are mainly
contributed by code.org partners (technology companies and educa-
tional organizations). code.org invited and screened submissions of
HoC activities in October 2020. Accepted submissions were listed
on the site and often included short promotional videos to provide
an overview, in addition to an outline of the activity. Activities
on the platform could be filtered by age, topic, and programming
language. In 2020 over 416 beginner activities were listed, with 264
for elementary, 319 for middle school and 235 for high school; some
activities were listed for multiple age groups. Additionally, in 2020,
CSTA’s CSEdWeek website featured 11 CS4SocialJustice Heroes
with activity cards and 13 CS4SocialJustice activities.

1.png

Figure 1: Sampling of HoC projects on code.org website.

3.2 Data Collection and Analysis
We focused our data collection and analysis on the publicly available
beginner HoC activities offered to middle and high school students
and teachers on code.org’s hourofcode.com and CSTA’s csedweek.com.
To better understand the kind of activities that were offered in the
2020 Hour of Code, we systematically selected a set of HoC activi-
ties and conducted content analysis on them. To scope our analysis,
using the filtering feature of the HoC website, we selected 1-hour
long activities offered to beginner middle and high school (grades 6-
8 and grades 9+) students and teachers. All activities with working
hyperlinks to activity details were included in our analysis. Listed
activities which did not have any working hyperlinks to the activity
details at the time of the analysis were not included. Following,
we analyzed the content of 316 learning activities—303 available
1-hour long code.org HoC beginner activities for middle school
and high school and 13 activities available on CSTA’s CSEdWeek
site. Two authors independently conducted inductive descriptive
coding [28] of all the HoC activities to capture different qualita-
tive aspects of these activities and their promotion of creative and
critical engagement with computing. In our first round of analysis
we created codes to describe the activities according to their type
of engagement in terms of wide walls, CS4Good/CS4SocialJustice
themes, use of media, programming languages and environments,
and the presence of commercial or corporate content. In a second
round of analysis we focused on visible foundations and analyzed
the projects with CS4Good/CS4SocialJustice themes and developed
a coding scheme to analyze how these activities engage or not with

critical computing. We applied the scheme across activities and dis-
cussed ambiguity and differences between coders until we reached
consensus.

4 FINDINGS
Overall, HoC’s website and CSTA’s CSEdWeek website offered over
316 activities for youth in middle school and high school that in-
cluded games, cartoons, and various other activities (see Figure 1);
in addition, in 2020 several activities also addressed the COVID-
19 crisis. . HoC activities introduced computing using a variety
of programming languages and environments (see Figure 2). For
example, 47.5% of activities used blocks (e.g., Scratch, AppInven-
tor, Code.org Blocks), 17.5% used web programming and markup
languages (JavaScript, HTML, CSS), 12% used Python, and 6% used
other programming languages such as C++ or Java. Some activities
(13.5%) included unplugged programming, using paper cards, work-
sheets or human bodies to explore programming concepts, and few
activities (4%) had no programming at all.

4.1 Wide Walls for Creative Computing
In terms ofWide Walls, although HoC offered a wide range of ac-
tivities, with diverse contexts, characters, topics, and programming
languages and environments, notably only 13% of the activities
guided learners to create projects that tap into their personal in-
terests (see Figure 2). The large majority of HoC activities (85%)
were close-ended, with students following step-by-step tutorials.
For example, a Disney sponsored activity, “Moana: Wayfinding
with Code” guided learners with step-by-step instructions to use
programming blocks to make the character move around and com-
plete tasks. Any attempt of creative exploration (trying different
things, playing around with the characters, or coming up with new
paths and solutions) was discouraged by flagging error messages.
Some activities (12.5%) provided guided open-ended opportunities

Figure 2: Visualization of HoC activities (n=316) by type ac-
tivity offered to students and teachers. Color indicates the
programming language used in the activity.

with scaffolding for students to create projects related to their own
interests (see Figure 3). “Imagine a World,” for example, invited
students to imagine worlds where anything is possible, “where
animals could talk or people could fly.” In this activity learners were
guided through the different programming blocks and features they
could use to make creative Scratch projects with themes, characters,

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Morales-Navarro, et al.

sounds and actions of their own choice. Another activity, “Create
a typeface,” introduced students to programming by showcasing
basic drawing functions in a JavaScript library and later inviting
learners to use these functions to design their own typefaces. In
both these activities, students were scaffolded to create personal-
ized projects that use and apply specific programming concepts.
Only one activity, Brain Pop’s “Engineering and Tech Creative Cod-
ing,” was open-ended, allowing students to come up with their own
project ideas without direct guidance. This activity included a short
video that introduced learners to the programming interface and
although it offered several suggestions of types of projects students
could make, it left it up to learners to explore the tool and come up
with their own project ideas.

Figure 3: Examples of Creative ComputingHoC activities on
hourofcode.com.

4.2 Visible Foundations for Critical Computing
Of the 316 analyzed activities, 46 (13.29%) included CS4Good and
CS4SocialJustice topics (see Figure 5) that engaged with environ-
mental (13 activities), gender (6 activities), health and wellness (8
activities), and race issues (5 activities) among others. We identified
three ways in which these 46 HoC activities addressed CS4Good
and CS4SocialJustice topics: 24 activities used coding to raise aware-
ness about issues outside of computing, 16 activities used coding
to create applications that fix issues in the world, and only 4 ac-
tivities somewhat made visible the otherwise invisible foundations
by addressing critical issues within computing as a field. For ex-

Figure 4: Visualization of HoC activities with CS4Good and
CS4SocialJustice topics by category.

ample, in the “Using CS to Raise Awareness” category, an activity
called “Beaver in a Mask” guided students to create an app that
gives points to users for identifying the correct use of facemasks to
mitigate the spread of COVID-19. Other activities in this category
guided students to create public service announcement animations

that addressed how to prevent COVID-19, plastic pollution, and
marine wildlife degradation. Activities that focused on “Using CS
to Fix the World” included creating meditation apps, a healthy meal
app, and training an AI algorithm to identify plastic in the ocean.
None of the activities in these two categories acknowledged the
limitations of such solutions or questioned the possible implications
of using code and technology to raise awareness or “fix” issues,
reinforcing the idea of technological solutionism [29], that is the
naïve belief that technology will solve humanity’s greatest ills.

In the “Engaging with Critical Computing” category, we iden-
tified four activities that addressed Visible Foundations. Yet, these
mostly focused on talking about computing, rather than having
students code. As such, it is not a coincidence that all four ac-
tivities require strong teacher guidance and facilitation. CSTA’s
“CS4SocialJustice Heroes,” for example, included a robust site with
posters, videos, and discussion questions around people who do crit-
ical work in computing such as Nicki Washington, Ruha Benjamin,
and Joy Buolamwini. Another activity, called “Queering Computer
Science,” also on CSTA’s portal, provided a guide for teachers to ad-
dress critical issues about gender identity and sexual orientation in
computer science and at their intersection with race and disability.
The only activity from code.org’s HoC portal in this category, called
“AI & Drawing,” provided teachers with a guide to address algo-
rithmic bias in machine learning by having conversations around
Google’s “QuickDraw” game.

In contrast, “Critical Computational Thinking: West Virginia
– Appalachia as Context for Learning,” on CSTA’s site, provided
teachers with a guide to discuss algorithmic bias and have students
code a food access and distribution application to address food
deserts. The guide invited teachers and students to interrogate
the values embedded in their applications and how, while aiming
to solve a social issue, software developers can generate further
inequities; all of this with the goal of coming up with plausible
ways to design applications that respond to the real needs of their
community. Overall, despite the large number of activities available
as a part of the HoC, very few engaged students in creative ways and
with critical aspects of representation, implications, participation,
and ethics within computing.

Figure 5: Examples of critical computing activities on
hourofcode.com (left) and csedweek.org(center and right).

5 DISCUSSION
In this paper, we examined the public portfolio of 2020 HoC ac-
tivities. While HoC 2020 offered a large number of introductory

Investigating Creative and Critical Engagement with Computing in the Hour of Code WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

activities (over 400 for all K-12 groups) in a variety of contexts
and programming environments, only a small subsection promoted
creative and critical engagement in the introduction of computing.
In the following sections, we discuss what we see are challenges
to creative and critical HoC activities, how we can design creative
and critical HoC activities, and how we can prepare teachers to
facilitate these activities.

5.1 Engagement with Creative and Critical
Computing in HoC 2020

In our analysis of 2020 HoC activities we found that few activities
(13%) engage students in creative computing by making projects
that relate to their personal interests and even fewer (1%) offered op-
portunities to engage with computing critically. This might be due
to the puzzle-like traditional style of HoC activities [27]. However,
it is promising that 12.5% of HoC activities were guided open-ended
activities. These activities scaffolded creative computing and en-
gaged with theWide Walls principle by guiding learners through
the introduction of programming concepts to create projects that
were connected to their personal interests. It is not a coincidence
that only one activity was completely open-ended, given the time
constraint of HoC activities. Perhaps what works best is to provide
guided open-ended activities where students can be guided as they
are introduced to programming but also have the space to create
personally meaningful artifacts.

Most CS4SocialJustice and CS4Good activities reproduced the
ideas that CS can help raise awareness about social issues or "fix"
the world and very few engaged with the Visible Foundations critical
computing principle. The few HoC activities that focused on critical
engagement offered discussion guides at best. These activities made
room for discussions about critical issues in computing instead of
providing coding opportunities where critical issues were consid-
ered. Only one activity, “Critical Computational Thinking: West
Virginia – Appalachia as Context for Learning,” provided opportu-
nities to both code and discuss the implications of the applications
students were making. From this activity we can learn that scaf-
folding is important, that discussing the implications of computing
works better when these are relevant to the communities of the
students and to the projects/applications they are coding. Within
the time constraints of HoC, we need to understand how to better
support students to both engage in critical conversations and adopt
some perspectives with regards to their application designs. Activi-
ties can be set in a context of investigating issues of representation,
participation, or implications within computing to encourage learn-
ers to explore design dimensions such as whom they are designing
for, what issues they are addressing, who can and cannot use their
applications, or what are the implications of their projects for com-
munities. Such questions can further integrate critical aspects with
programming projects, instead of treating them in isolation.

5.2 Moving Forward: Designing Creative and
Critical HoC Activities

This analysis provides important insights for how we can design
future HoC introductory activities, with Wide Walls and Visible
Foundations, that address creative and critical computing. First, we
obviously want to keep the central premise of Low Floors for HoC

activities which is that they should be accessible. This principle
should also apply to any activities that engage youth critically with
computing. Second, we need to work on Widening Walls by provid-
ing multiple ways of addressing critical questions within computing
in HoC activities: who is coding, for whom are they coding, towards
what ends, and what are the implications of computing applications.
We can design an array of activities exploring a question at a time to
allow students to delve deeper into these critical issues, approach-
ing different angles and perspectives (designer, user, programmer,
etc.). Having a multi-faceted approach to critical issues may help
engage a broader set of students in these conversations, attending
to different concerns students may be interested in.

We found HoC examples that illustrated compelling ways to
engage K-12 youth with imagining future worlds. For instance, in
one HoC Scratch activity, discussed above, youth were asked to
imagine future worlds in which “animals could talk or people could
fly.” This same activity could be leveraged to imagine future worlds
that address critical issues. For example, in their work on Remixing
Wakanda, Holbert, Dando and Correa [14] suggest that critical
constructionist design could invite “youth to critically examine
social, economic, and environmental systems by both connecting
to personal and family histories as well as reflecting on local and
lived experiences . . . [to] design futuristic artifacts that critique
existing social inequities and environmental instability.” (p. 1). In
computing education, plenty of attention has been given to how
learning computational concepts like variables, conditionals and
loops can be scaffolded. Now, we need to learn how to scaffold
conversations about how computing applications have implications
on people, communities, and the environment. While discussing
these issues is one way to address them, it is only the beginning.
We need to further support students to integrate these ideas into
the computing applications they design.

Third, we must work on Opening Windows by providing audi-
ences for sharing and discussing critical issues in computing. Right
now, teachers use HoC activities with their individual classes. It
is likely that within those classes students share and compare ar-
tifacts produced during HoC. Yet, HoC can go beyond, we can
Open Windows by having youth share their creations with other
HoC participants across the globe. For example, activities that use
Scratch can create studios where students can share their projects
(e.g., [15]). Even further, Open windows can also involve bringing
in multiple perspectives and students’ lived experiences to how we
introduce computing and programming in HoC, this could be by
connecting to cultural traditions, drawing inspiration from other
student HoC projects or designing HoC activities that require stu-
dent collaboration inside the classroom and with students’ wider
communities.

5.3 Preparing Teachers for Critical Discussions
In order to introduce students to critical computing in HoC-style ac-
tivities we have to prepare teachers to facilitate learning about com-
puting concepts while thinking about computing critically. This is
particularly important considering thatmany teachers that facilitate
HoC activities are not necessarily CS teachers. Even if facilitators
are CS teachers, they might not have previous experience facilitat-
ing conversations about computing and society. For instance, an

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Morales-Navarro, et al.

activity that aims to support students to learn about conditional
statements and their role in shaping decision-making algorithms
in job markets and policing systems that are biased against women
and people of color would require teachers to integrate disciplines
with epistemological differences and bring together computational
concepts in dialogue with their societal implications. While the
computing education field has ample evidence, accounts, and sup-
port for the former, we barely know how to support teachers with
the latter. To start with, we need to support teachers in facilitating
critical conversations, by providing supplementary materials, while
also supporting learners without overwhelming them. Many HoC
2020 activities were accompanied by short video trailers that intro-
duced the activities and provided overviews of tools used. These
trailers can give examples of completed projects and even testimo-
nials, making the activities more accessible to newcomers. Many
teachers might also use these trailers to decide what HoC activities
to choose for their classes. But more importantly, short videos have
the potential of becoming conversation starters for critical issues
in computing. For this, we need to generate more scaffolds and
materials to help teachers prepare and steward critical discussions.

6 CONCLUSION
While HoC activities are short in nature, they nonetheless have
reached hundreds of millions of youth around the globe. The range
of HoC activities offered, thus, signals to youth what is considered
representative of computing, what is valued within the field and in
which ways computing can address but also raise issues. We argue
that engaging with computing creatively and critically has to start
early, coupled with the introduction of computing concepts. This
is not only to justify learning to code but also to prepare youth
to create and express themselves with code and understand and
confront the challenges associated with computing technologies.
Following educator and activist Paulo Freire’s saying that “reading
the word is not only preceded by reading the world, but also by
a certain form of writing it or rewriting” [11] (p. 18), we see that
reading and writing code is as much about reading and writing the
world as it is about understanding, changing, and re-making the
world in which we live—and this involves thinking creatively and
engaging with critical issues.

REFERENCES
[1] Ugochi Acholonu, Jessa Dickinson, Dominic Amato, and Nichole Pinkard. 2016.

Lessons learned from hosting an Hour of Code event. In 2016 Research on Equity
and Sustained Participation in Engineering, Computing, and Technology (RESPECT).
IEEE, IEEE, 1–4.

[2] William Aspray. 2016. Participation in Computing: The National Science Founda-
tion’s Expansionary Programs (1st ed.). Springer Publishing Company, Incorpo-
rated.

[3] Ashok Basawapatna, Alexander Repenning, Mark Savignano, Josiane Manera,
Nora Escherle, and Lorenzo Repenning. 2018. Is drawing video game characters
in an hour of code activity a waste of time?. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 93–98.

[4] Ruha Benjamin. 2019. Race After Technology: Abolitionist Tools for the New Jim
Code. Wiley. https://books.google.com/books?id=G6-hDwAAQBAJ

[5] Matthew Berland, Nathan Holbert, and Yasmin B. Kafai. 2020. Introduction: Fifty
Years Of Constructionism. In Designing Constructionist Futures The Art, Theory,
and Practice of Learning Designs, Matthew Berland, Nathan Holbert, and Yasmin B.
Kafai (Eds.). MIT Press, Cambridge, MA, 1–20.

[6] Karen Brennan, Christian Balch, and Michelle Chung. 2014. Creative computing.
Harvard Graduate School of Education (2014).

[7] Karen Brennan and Jimenez Raquel. 2020. The Scratch Educator Meetup: Useful
Learning In A Playful Space. In Designing Constructionist Futures The Art, Theory,
and Practice of Learning Designs, Matthew Berland, Nathan Holbert, and Yasmin B.
Kafai (Eds.). MIT Press, Cambridge, MA, 1–20.

[8] Carlos Jorge Brigas and José Alberto Quitério Figueiredo. 2019. " The Hour of
the Code": Computational Thinking Workshop in a Primary School in Guarda,
Portugal. Research in Social Sciences and Technology 4, 2 (2019), 129–136.

[9] Sasha Costanza-Chock. 2020. Design justice: Community-led practices to build the
worlds we need. MIT Press.

[10] Nora Escherle, Dorit Assaf, Ashok Basawapatna, Carmine Maiello, and Alexan-
der Repenning. 2015. Launching swiss computer science education week. In
Proceedings of the Workshop in Primary and Secondary Computing Education.
11–16.

[11] Paulo Freire. 1985. Reading the world and reading the word: An interview with
Paulo Freire. Language arts 62, 1 (1985), 15–21.

[12] Reza Ghasem Aghaei, Ali Arya, and Robert Biddle. 2017. Affective walkthroughs
and heuristics: Evaluating minecraft hour of code. In International Conference on
Learning and Collaboration Technologies. Springer, Springer, 22–40.

[13] Michael Halvorson. 2020. Code Nation: Personal Computing and the Learn to
Program Movement in America. Association for Computing Machinery.

[14] Nathan Holbert, Michael Dando, and Isabel Correa. 2020. Afrofuturism as critical
constructionist design: building futures from the past and present. Learning,
Media and Technology 45, 4 (2020), 328–344.

[15] Yasmin Kafai, Gayithri Jayathirtha, Mia Shaw, and Luis Morales-Navarro. 2021.
CodeQuilt: Designing an Hour of Code Activity for Creative and Critical Engage-
ment with Computing. In Interaction Design and Children. 573–576.

[16] Yasmin B Kafai and Quinn Burke. 2014. Connected code: Why children need to
learn programming. MIT Press.

[17] Yasmin B Kafai and Deborah A Fields. 2018. Some reflections on designing
constructionist activities for classrooms. Proceedings from Constructionism (2018).

[18] Yasmin B Kafai and Kylie A Peppler. 2009. Creative coding: Programming for
personal expression. In The 8th international conference on computer supported
collaborative learning. 76–78.

[19] Amy J Ko, Alannah Oleson, Neil Ryan, Yim Register, Benjamin Xie, Mina Tari,
Matthew Davidson, Stefania Druga, and Dastyni Loksa. 2020. It is time for more
critical CS education. Commun. ACM 63, 11 (2020), 31–33.

[20] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for
Computational Art and Design. MIT Press.

[21] Jane Margolis and Allan Fisher. 2002. Unlocking the clubhouse: Women in comput-
ing. MIT press.

[22] Pedro Plaza, Elio Sancristobal, German Carro, Manuel Castro, and Manuel
Blazquez. 2018. Scratch day to introduce robotics. In 2018 IEEE Global Engi-
neering Education Conference (EDUCON). IEEE, IEEE, 208–216.

[23] Alexander Repenning and Ashok Basawapatna. 2016. Drops and Kinks: Modeling
the Retention of Flow for Hour of Code Style Tutorials. In Proceedings of the 11th
Workshop in Primary and Secondary Computing Education. ACM, 76–79.

[24] Alexander Repenning, Ashok Basawapatna, Dorit Assaf, Carmine Maiello, and
Nora Escherle. 2016. Retention of flow: Evaluating a computer science education
week activity. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education. ACM, 633–638.

[25] Mitchel Resnick and Natalie Rusk. 2020. Coding at a crossroads. Commun. ACM
63, 11 (2020), 120–127.

[26] Mitchel Resnick and Brian Silverman. 2005. Some reflections on designing
construction kits for kids. In Proceedings of the 2005 conference on Interaction
design and children. 117–122.

[27] Margarida Romero, Ann-Louise Davidson, Giuliana Cucinelli, Hubert Ouellet,
and Kate Arthur. 2016. Learning to code: from procedural puzzle-based games to
creative programming. Revista del Congrés Internacional de Docència Universitària
i Innovació (CIDUI) 3 (2016).

[28] Johnny Saldaña. 2013. The coding manual for qualitative researchers (2nd ed.).
Sage.

[29] Kentaro Toyama. 2015. Geek heresy: Rescuing social change from the cult of
technology. PublicAffairs.

[30] Sepehr Vakil. 2018. Ethics, identity, and political vision: Toward a justice-centered
approach to equity in computer science education. Harvard Educational Review
88, 1 (2018), 26–52.

[31] Sepehr Vakil. 2020. “I’ve Always Been Scared That Someday I’m Going to
Sell Out”: Exploring the relationship between Political Identity and Learning in
Computer Science Education. Cognition and Instruction 38, 2 (2020), 87–115.

[32] Annette Vee. 2017. Coding literacy: How computer programming is changing
writing. MIT Press.

[33] Sara Vogel. 2019. Power, Discourse, and Knowledge in Computer Science Educa-
tion Advocacy: An Analysis of Popular Code. org Videos. (2019).

[34] Ben Williamson. 2016. Political computational thinking: Policy networks, digital
governance and ‘learning to code’. Critical Policy Studies 10, 1 (2016), 39–58.

[35] Cameron Wilson. 2015. Hour of code—a record year for computer science. ACM
Inroads 6, 1 (2015), 22–22.

https://books.google.com/books?id=G6-hDwAAQBAJ

	Abstract
	1 Introduction
	2 Background
	3 METHODS
	3.1 Hour of Code Activities
	3.2 Data Collection and Analysis

	4 FINDINGS
	4.1 Wide Walls for Creative Computing
	4.2 Visible Foundations for Critical Computing

	5 DISCUSSION
	5.1 Engagement with Creative and Critical Computing in HoC 2020
	5.2 Moving Forward: Designing Creative and Critical HoC Activities
	5.3 Preparing Teachers for Critical Discussions

	6 Conclusion
	References

